190 research outputs found

    Semi-microscopic theory of two proton emission

    Full text link
    We propose a semi-microscopic model for the simultaneous emission of two protons. This model has the advantage of avoiding certain technical aspects of a fully microscopic 3-body framework, while also allowing the investigation of the influence of proton pairing on the total lifetime of the decaying nucleus. Thus, we use the standard singlet two-proton wave function on the nuclear surface, provided by the Bardeen-Cooper-Schrieffer (BCS) approach, as a boundary condition for the propagator operator. Our model allows for the estimation of all quantities related to the 2p2p emission process, since it provides the 3-body wave function over most of the domain. We show that reasonable agreement with experimental values can be reached by varying the pppp pairing strength outside the nucleus in an interval close to the "bare" singlet value

    Self-consistent calculations for atomic electron capture

    Full text link
    We present a comprehensive investigation of electron capture (EC) ratios spanning a broad range of atomic numbers. The study employs a self-consistent computational method that incorporates electron screening, electron correlations, overlap and exchange corrections, as well as shake-up and shake-off atomic effects. The electronic wave functions are computed with the Dirac-Hartree-Fock-Slater (DHFS) method, chosen following a systematic comparison of binding energies, atomic relaxation energies and Coulomb amplitudes against other existing methods and experimental data. A novel feature in the calculations is the use of an energy balance employing atomic masses, which avoids approximating the electron total binding energy and allows a more precise determination of the neutrino energy. This leads to a better agreement of our predictions for capture ratios in comparison with the experimental ones, especially for low-energy transitions. We expand the assessment of EC observables uncertainties by incorporating atomic relaxation energy uncertainties, in contrast to previous studies focusing only on Q-value and nuclear level energies. Detailed results are presented for nuclei of practical interest in both nuclear medicine and exotic physics searches involving liquid Xenon detectors (67Ga^{67}\mathrm{Ga}, 111In^{111}\mathrm{In}, 123I^{123}\mathrm{I}, 125I^{125}\mathrm{I} and 125Xe^{125}\mathrm{Xe}). Our study can be relevant for astrophysical, nuclear, and medical applications.Comment: 16 pages, 9 figures, 4 table

    Search for π⁰ decays to invisible particles

    Get PDF
    The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson

    Measurement of the very rare K + → π+νν¯ decay

    Get PDF
    The NA62 experiment reports the branching ratio measurement BR(K+→π+νν¯)=(10.6−3.4+4.0|stat±0.9syst)×10−11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K+→π+νν¯ decay, observed with a significance of 3.4σ. The experiment achieves a single event sensitivity of (0.839 ± 0.054) × 10−11, corresponding to 10.0 events assuming the Standard Model branching ratio of (8.4 ± 1.0) × 10−11. This measurement is also used to set limits on BR(K+→ π+X), where X is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample

    Physics beyond the standard model with kaons at NA62

    Get PDF
    The NA62 experiment at CERN Super Proton Synchrotron was designed to measure BR(K+ \u2192 \u3c0+\u3bdv\u304) with an in-fight technique, never used before for this measurement. This decay is characterised by a very precise prediction in the Standard Model. Its branching ratio, which is expected to be less than 10-10, is one of the best candidates to indicate indirect effects of new physics beyond SM at the highest mass scales. NA62 result on K+ \u2192 \u3c0+\u3bdv\u304 from the full 2016 data set is described. Also a search for an invisible dark photon A\u2032 has been performed, exploiting the efficient photon-veto capability and high resolution tracking of the NA62. The signal stems from the chain K+ \u2192 \u3c0+\u3c00 followed by \u3c00 \u2192 A\u2032\u3b3. No significant statistical excess has been identified. Upper limits on the dark photon coupling to the ordinary photon as a function of the dark photon mass have been set, improving on the previous limits over the mass range 60 - 110 MeV/c2

    Recent results in kaon physics

    Get PDF
    A review of the present experimental status of the K → πνν (Kπνν) and other kaon decay analyses at experiments NA62 (CERN) and KOTO (J-PARC) is given. The Kπνν decay is one of the best candidates among the rare meson decays for indirect searches for new physics in the mass ranges complementary to those accessible by current accelerators. The Standard Model (SM) prediction of the branching fraction (B) of the Kπνν decay is lower than 10−10 in both neutral and charged modes. The NA62 experiment aims to measure the B of the charged mode with better than 10% precision. Three candidate events, compatible with the SM prediction, have been observed from a sample of 2.12×1012 K+ decays collected in 2016 and 2017 by NA62. More than twice the statistics is available in the 2018 dataset currently being analysed. The KOTO experiment in Japan aims to measure B(KL → π0νν) using a technique similar to NA62, but with much lower momentum. In the first dataset taken in 2015 zero signal candidate events were observed. The current status of the analysis of the 2016-2018 dataset with 1.4 times more data is presented. Finally, the most recent results of other physics analyses at the NA62 experiment are summarised

    Searches for lepton number violating K+ decays

    Get PDF
    The NA62 experiment at CERN reports a search for the lepton number violating decays K+→π−e+e+ and K+→π−μ+μ+ using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10^-10 and 4.2 x 10^-11 are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively

    Search for heavy neutral lepton production in K+ decays to positrons

    Get PDF
    A search for heavy neutral lepton (N) production in K+→e+N decays using the data sample collected by the NA62 experiment at CERN in 2017-2018 is reported. Upper limits of the extended neutrino mixing matrix element |Ue4|^2 are established at the level of 10^−9 over most of the accessible heavy neutral lepton mass range 144-462 MeV/c^2, with the assumption that the lifetime exceeds 50 ns. These limits improve significantly upon those of previous production and decay searches. The |Ue4|^2 range favoured by Big Bang Nucleosynthesis is excluded up to a mass of about 340 MeV/c^2

    Search for production of an invisible dark photon in π0 decays

    Get PDF
    The results of a search for π0 decays to a photon and an invisible massive dark photon at the NA62 experiment at the CERN SPS are reported. From a total of 4.12 x 10^8 tagged π0 mesons, no signal is observed. Assuming a kinetic-mixing interaction, limits are set on the dark photon coupling to the ordinary photon as a function of the dark photon mass, improving on previous searches in the mass range 60-110 MeV/c^2. The present results are interpreted in terms of an upper limit of the branching ratio of the electro-weak decay π0→γνν¯, improving the current limit by more than three orders of magnitude
    corecore